解析解によるメッシュフリー解析の理論的背景

On Theoretical Background of the Mesh-Free Analysis Method by Analytic Solutions

静岡理工科大学 浦田 喜彦

Yoshihiko URATA Shizuoka Institute of Science and Technology, Toyosawa 2200-2, Fukuroi, Shizuoka, 437-8555 Japan

The author has investigated an approximate method for numeric simulation of acoustic fields of the two- and three-dimensional domains with arbitrary shapes. In the method, the collocation method is applied to analytic solutions represented in the polar coordinates. Results obtained by this method are very accurate in spite of simplicity of the method. The theoretical validity of the method, however, has not been explained sufficiently so far. In this paper, it is shown that the natural modes of some domains can be resolved into plane waves propagating in all directions. Some properties of the natural modes can be explained by the propagating direction spectra. And then a consideration is made about the case in which the collocation method brings ill results.

Key Words: Acoustic fields, Natural mode, Natural frequency, Plane wave, Propagating direction spectrum, Collocation method

1.緒 言

一定振動数の定常音場を記述するヘルムホルツの方程 式において厳密解が得られるのはきわめて限られた領域形 状の場合だけであり、一般的には近似解法が必要となる、 近似法の主流である FEM などの領域分割法では波長が短 くなると精度を確保するために分割数を大きくしなければ ならず,それが計算の準備や実行の負担を大きくする原因 となっている.そこで,筆者らは解析解で構成した級数に 選点法を適用する方法を近似解法の一つとして提案してき た(1)~(4).現在はいまだ検討途上ではあるが,かなり広い範 囲で能率と精度のよい解析が可能であることが確認されて いる.この方法はあらゆる問題に対応できるほどの柔軟性 は持たないが、他の解法と併用したり、相互補完したりす るのであれば近似解法の一つとしての存在意義は十分にあ ると考えられる.しかしながら,現在までの検討は適用例 の拡大、すなわち、経験則の積み重ねの段階を出ていない. それはそれで必要なことではあるが,視点を変えて多少は 理論的な面からも検討してこの方法の基本的性質や限界な どを明らかにしていくことも必要であろう.多面的な検討 で方法の性質がよりはっきりすると考えられるからである. そこで本報では厳密解が得られる問題とそうでない問題の 相互関係,近似解法における極座標の原点の位置と精度の 関係,および選点法の基本的性質などについて検討した結 果を報告する.

2. 厳密解がある場合とない場合の関係

図1に示す二つの図形は非常に近接したものである.し かし,図の左側の長方形は二次元のヘルムホルツ方程式

$$\nabla^2 \varphi + k^2 \varphi = \mathbf{0} \tag{1}$$

の厳密解が得られる典型的な領域形状であるが,右側の長 方形からわずかに変形した台形の厳密解は得られず、近似 解によらざるを得ない.図1の二つの領域形状とも提案す る近似解法が適用できるが,図には選点法のための計算点 (部分領域の接合に利用することもできるので本研究では 節点といっている)も示した.境界条件が $\varphi = 0$ の場合の 固有値と固有モードを図1に示した節点を用いて選点法で 求めた結果を図2に示す.ただし,図1の寸法は任意の単 位であり,図2の固有値も同じ長さの単位で表すものとす る.節点数の少ない計算であるにもかかわらず長方形の一 次モードの固有値は9桁まで厳密値に一致していた.図2 の計算結果は領域形状の近さを反映して固有値も固有モー ドも相互に近いものとなっている.このような近さ,およ び一方は厳密解が得られて他方は得られないという違いは 何によって決まるのであろうか.つぎにそれを考察する. 図 1 の長方形が 0 x a, 0 y bを占めるとすると

Fig1. A rectangle and a trapezoid

その固有関数(厳密解)はm,nを自然数として

$$p = \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$
(2)

のように表される. $\alpha = m\pi/a$, $\beta = n\pi/b$ と略記することにすれば式(2)はつぎのように変形することができる.

 $\varphi = \frac{1}{4} \left\{ e^{j(\alpha x - \beta y)} + e^{-j(\alpha x - \beta y)} - e^{j(\alpha x + \beta y)} - e^{-j(\alpha x + \beta y)} \right\}$ (3)

ここで省略されている時間因数 exp(*jot*) を補うと式(3)の 各項は平面上の4方向(相互に*x*, *y*軸に対称な関係にある) に進む平面波を表していることがわかる.つまり,長方形 の固有関数は平面波の重ねあわせで表現できるのである. 式(2)によれば *x*, *y* 軸に平行な節線が全平面上に無数に生 じるが,長方形で厳密解が得られるのは領域境界がそのよ うな節線の一部に一致し,長方形自身が無限平面を埋め尽 くす繰り返し図形になっているからに他ならない.無限平 面の問題というのは実は境界条件を考えなくてよい問題な のであり,常に厳密解が得られるのである.そのような見 方をすれば台形で厳密解が得られないのは長方形にきわめ て近くても無限平面の解で節線が領域の輪郭に一致するも のが存在しないからという説明が可能になる.

さて,厳密解が得られない台形の固有関数は φ が式(2) または(3)のように閉じた形で表されないだけで,平面上の あらゆる方向に進む平面波を重ねあわせで表せるという事 情には変わりはない.提案する近似解法もそのことを根拠 の一つに使ってきた.そこで,選点法で得た近似解を分解 して進行方向ごとの平面波の振幅分布を求めたのが図3で ある.横軸の数字 n は平面波の進行方向を表し,平面波が

K = 1.88786 1st mode of the rectangle

tangle 1st mode of the trapezoid

Fig.3 Propagating direction spectra of wave components of natural modes

x 軸と $\gamma = 2n\pi/20$ の角度をなす方向に進行するものとし ている.長方形と台形ではピークの高さはかなり違うがピ ークの位置は一致している.固有値や固有関数の近さはこ の進行方向スペクトルの分布の近さに対応するものであろ う.また,中心に関して点対称な形状の長方形はもちろん のこと,そのような対称性がないの台形の場合にも進行方 向角 γ が π だけ異なると振幅が同じ値になっていること がわかる.これは領域形状にかかわりなく固有関数一般に ついて成り立つことで,固有関数は互いに正反対の方向に 進む平面波が重なって進行性を打ち消し合ったものである ことがこのような形であらわれているのである.

厳密解が得られるか否かの差は前述したように解が閉じた形で得られるか否かの差である.閉じた形の解が得られなくてもすべての方向に進む平面波を重ね合わせた

$$\varphi = \int_0^{2\pi} D(\gamma) \ e^{-jkr\cos(\gamma-\theta)} d\gamma \tag{4}$$

の形を考えれば凸形および滑らかな凹部があっても浅けれ ば対応できる.式(3)は式(4)における $D(\gamma)$ がデルタ関数の 和となる特別な場合である. $D(\gamma)$ は一般に 2π を基本周期 とする周期関数であるからフーリエ級数に展開できてつぎ の形に書くことができる.

$$D(\gamma) = \frac{1}{2\pi} \sum_{n=0}^{\infty} A_n e^{jn(\gamma + \pi\pi/2)}$$

これを式(4)に代入して変形すれば

$$\begin{split} \varphi &= \sum_{n=0}^{\infty} A_n \frac{1}{2\pi} \int_0^{2\pi} e^{j\{n(\gamma + \pi/2) - kr\cos(\gamma - \theta)\}} d\gamma \\ &= \sum_{n=0}^{\infty} A_n e^{jn\theta} \frac{1}{2\pi} \int_0^{2\pi} e^{j\{n\psi - kr\sin\psi\}} d\psi \end{split}$$

最後の結果にベッセル関数の積分表示を適用すれば

$$\varphi = \sum_{n=0}^{\infty} A_n J_n(kr) e^{jn\theta}$$
⁽⁵⁾

を得る.これを実数表現して有限項で打ち切れば

$$\varphi = \sum_{n=0}^{\infty} J_n(kr) \cdot \{A_n \cos n\theta + B_n \sin n\theta\}$$

(6)これが本研究の方法で通常用いる近似の一般解である. すでに報告しているが,式(6)は領域形状が凸形,あるいは 浅い滑らかな凹部がある場合の近似解析に有効である.閉 じた形ではない式(4)がもっとも一般的にさまざまな場合 に対応できる解表現であり,式(6)はその有限離散表現なの である.

以上をまとめると,厳密に解ける領域形状の問題とそれ と領域形状は近いが厳密には解けない場合の固有モードを 進行波成分に分解して進行方向スペクトルを求めるとその 分布傾向には明らかに類縁関係が認められる.進行方向ス ペクトルの分布の近さが問題どうしの近さに密接に関連し たひとつの指標になっていると考えられる.一方,厳密に 解ける長方形の場合には進行方向スペクトルが有限本の線 スペクトルになるのに対して厳密に解けない台形などの場 合は連続スペクトルになるという結果も得られた.ここで は具体的に述べなかったが,厳密に解けるもう一つの例で ある円形領域の固有モードの進行方向スペクトルはベッセ ル関数の積分表示から正弦波状の分布になることが明らか である.これらのことより閉じた形で解が得られるか否か は固有モードを形成する平面波の進行方向スペクトルの形 状に密接に関連することがわかった.これが本章での結果 である.

3.近似解の原点の位置と関連する事項

これまで式(6)を近似の一般解として解析例を積み重ね てきた.この解表現には原点をどこに取るべきかという情 報は一切含まれていない.したがって,研究を始めた当初 は原点をどこにとろうが結果に影響はないと考えていた. このことは式(4)のように無限項をとるのであれば正しい が,実際の数値計算においては有限項で打ち切らざるを得 なく,それが事情を変化させていることがわかった.

前章では平面波の重ね合わせをベッセル関数による展開 式に変形する手順を示したが、ここでは逆に平面波をベッ セル関数で展開することを考える. x軸と角度 γ をなす方 向に進む平面波の点 (r, θ) における値はつぎのように表す ことができる.⁽⁵⁾

$$e^{-jkr\cos(\gamma-\theta)} = J_0(kr) + 2\sum_{m=1}^M (-1)^m J_m(kr)\cos m(\gamma-\theta)$$

(a) in the neighborhood of the origin

(b) in a place slightly distant from the origin

Fig.4 A plane wave calculated by superposition of Bessel functions in the neighborhood and a place distant from the origin 厳密には級数は無限項を取る必要があるが,ここでは有限で打ち切っている.式(7)は式(6)の特別な場合と考える頃ができる.この式の級数を11項とって $\gamma = \pi/12$,すなわち x 軸から 15° だけ傾いた方向に進む平面波を計算した様子を図4に示す.結果を原点を中心とする場所と原点から少し離れた場所の比較として示した.原点近傍では目視の範囲内での判断になるが波の分布に乱れはなく精度よく計算できている様子がうかがえる.ところが原点から少し離れた場所では波の分布に明らかな乱れが確認できる.

以上は平面波を例にした説明であるが,式(6)などの形の級数は有限項で打ち切り,有限桁で計算する限りは原点近傍で有効な式と考えるべきである.このことは近似計算を実施するにあたってつぎのことに注意しなければならないことを示している.

- (1) 節点データを作成する際に原点はなるべく領域の中心に近い位置に設定する方が精度確保の上で有利である.
- (2) アスペクト比の大きな領域形状は精度的に不利 になる.したがって部分領域に分割する際には 極端にアスペクト比の大きな部分領域を作るべ きではない.

以上のことがらは直観的にも納得できる内容であるが, それが近似の一般解の解表現から直接説明できたというの が本章の結果である.

4.選点法について

本研究で提案する近似解法における近似のポイントは二 つある.一つはすでに述べたように厳密には無限級数とす べきところを有限で打ち切った級数を解に採用しているこ とである.この点はやむをえないものと考えられる.他は 境界条件を境界上に配置した離散的な点においてだけ満た すようにした選点法を採用していることである.境界条件 の満たし方として選点法は唯一というわけではない.著者 も積分を用いて有限要素型の離散化が可能なことを示した 経験を持つ.しかしながら,アルゴリズムの簡便さや計算 時間の点からみれば選点法がもっとも有利な方法であるこ とは間違いないであろう.残る問題は精度と信頼性である.

工学的問題に選点法を適用した例はいくつかあるが,そ のような事例における選点法の評価は肯定的なものから否 定的なものまでさまざまである.そのこと自体が選点法は 使い方しだいでいろいろな結果をもたらす可能性があるこ とを示している.

まず,選点法を適用する対象の関数列が項数を増してい くときに厳密解に収束するようなものでないとならないこ とは明らかである.過去の事例の中にはその点の確認が不 明のものがあり,そのような場合によい結果が得られなか ったとしても問題の所在をただちに選点法にあるとするこ とは妥当とはいえないであろう.ただし,選点法は使用法 を誤ると非常に問題の多い結果をもたらすことがあるのは

事実である.

三次元ヘルムホルツ方程式の固有値問題で計算対象を直 方体としたときに厳密な固有値と比較して精度の悪い値を 数多く捕捉してしまったことがある.ただし,計算した固 有値のすべての精度が悪かったというのではなく,精度の よいものと悪いものとが入り混じった状態で得られたので ある.その計算に使用したデータは直方体表面上に完全に 規則的に節点を配置したものである.この状態で起き得る 現象として行列式計算における桁落ちが想定される.そこ でこれに対する対策として規則的に配置した節点をその位 置から領域の代表寸法の1/100~1/1000程度の不規則な揺 らぎを与えてみた.ただし,稜線上の点はその位置条件に 矛盾しない揺らぎの与え方をなければならない.そのよう にして計算すると精度の悪かった固有値は消え,すべてが 満足できる精度を持つ結果となった.

本研究で使用している解析解は規則性がきわめて高い関 数群である.それに対して規則正しい点配置で選点法を適 用すると当然規則的な数値の列が生成されることになる. これが災いしていると考えられる.ただし,この現象が起 きた元の三次元問題では数値の挙動を把握するのが難しい ためにここでは簡単な例題で説明をする.

いま,関数 f(x)を

$$f(\mathbf{x}) = \begin{cases} \mathbf{x}/\pi \ , & 0 \quad \mathbf{x} \quad \pi \\ 2 - \mathbf{x}/\pi\pi \ , & \pi \quad \mathbf{x} \quad 2\pi \end{cases}$$
(7)

と定義して 2π を周期とする周期関数に拡張するとフーリ エ級数に展開できる.これを 20 項で近似する.その近似 級数の係数を選点法で決めてみる.点数は項数と同じ 20 個とし,

$$x_m = \frac{2m\pi}{20}, \quad (m = 0, 1, 2, \cdots, 19)$$
 (8)

の各点で

$$\sum_{n=0}^{19} A_n \cos nx_m = f(x_m)$$
 (9)

という連立方程式を解いて An を決めるのである.

図 5 (a)は元の関数 f(x) を直線で,また,係数を決めた 後の式(9)で計算した値を黒丸で示した.黒丸は係数を 決める点に一致させている.当然のことながら両者の一致 はよい.ところが点の数を増やして各点の中間点でも計算 してみると図 5 (b)のようにばらつく結果となる.つまり, 係数を決めるのに使った点以外では十分な近似ができてい ないことがわかる. A_n を決めるための連立一次方程式の 係数行列の要素は $\cos nx_m$ であるが,式(8)を代入すれば

 $\cos\frac{mn}{10}\pi$

である.*m*,*n*をそれぞれの範囲内でうごかすときにこの 式で計算される 20×20=400 個の係数行列の要素はただの 11 種類の値をとるだけであり,正負の区別を除くと6種類 だけになってしまう.400 個の行列要素がただの6個の数 値で構成される状況が連立一次方程式の数値計算に対して 好ましくないことはいうまでもない.図5(b)の結果はこの ことを反映したものである.

そこで乱数を利用して係数を決める点に 1/1000 程度の 揺らぎを加えて計算した結果が図 5 (c)である.この結果は 0 x 2π の区間を 40 等分した点で求めたもので, $x=0,\pi$ 以外の点は係数計算に使用していないのである が十分な精度の結果が得られている.数値的にみると相対 誤差は $10^{-6} \sim 10^{-8}$ であった.点の位置にわずかではあるが 不規則な揺らぎを加えた結果,係数決定のための方程式の 行列成分の数値がばらつき,それが精度向上につながった

Fig.5 Examination of the collocation method about a triangular function

と判断される.

ここで述べた問題点はたぶん選点法独自のものである. この検討でわかったこととして選点法は無条件で使用でき るほど方法として堅固なものではないが,点配置を適当に 不規則にするなどの注意をすれば方法の弱点を顕在化させ なくてすむということである.

5.結 言

この報告で明らかになったことは以下のとおりである. (1)長方形のように厳密解が得られる場合と形状がそれ に近くても台形など厳密解が得られない場合を比較すると, 固有値や固有モードの近さを示す類縁関係は解を平面上の 各方向に進行する平面波のスペクトルに分解したときのス ペクトル分布の近さで説明できる.一方,厳密解が得られ る場合には平面波の進行方向スペクトルが単純な形になる のに対して厳密解が得られない場合には単純にはならない ことがわかった.

(2)近似解は有限の項数で打ち切らざるを得ない.その 影響は原点の近傍では精度はよいが,原点から遠ざかると 相対的に精度は低下するという形で現れる.したがって計 算対象はなるべく円や球に近い場合が有利で,原点はその 中心近くに設定すべきである.この注意は部分領域に分解 するときにも成り立ち,アスペクト比が大きい形状の部分 領域の設定は避けるべきである.

(3)解析解は規則性高い関数群である.選点法を適用す るための計算点を規則正しく取ると各点の関数地の間に数 値的な依存関係(一次従属性など)が生じ,計算の誤算が 大きくなることがある.これを避けるためには計算点の位 置を乱数などを利用して不規則な揺らぎを持たせるとよい. このような注意を払えば選点法はその簡便さにもかかわら ず,信頼性の高い結果をもたらしてくれる.

文 献

- (1) 中川稔章・浦田喜彦, 機論, 63-614, C(1997), 3496.
- (2) 中川稔章・浦田喜彦, 機論, 65-631, C(1999), 881.
- (3) 中川稔章・浦田喜彦,機論,66-644,C(2000),1082.
- (4) 浦田喜彦・内野光一郎, 機論, 67-657, C(2001), 1322.
- (5) 森口繁一・宇田川銈久・一松 信,数学公式 ,(1960), 149,岩波書店.